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The flow of a homogeneous viscous liquid towards a sink in the interior of a rotating 
basin with a free surface, a horizontal bottom and a vertical side wall is considered. The 
conditions assumed are such that an Ekman layer occurs a t  the bottom beyond a small 
distance from the sink. A first-order correction to the Ekman model accounting for 
the influence of the inertial terms in the equations of motion is given for a special case. 
It is shown theoretically and experimentally that eccentric withdrawal from a circular 
basin causes a vortex at  the sink and a counter-rotating gyre attached to the far wall. 

1, Introduction 
The research under discussion was done to make clear a certain aspect of the flow 

caused by the injection of compressed air at the bottom of a thermally stratified lake 
or reservoir. Air injection is sometimes used to increase the mixing between epilimnion 
and hypolimnion, thus destratifying the lake (Goossens &Van Pagee 1977 ; Kranenburg 
1978). Local air injection induces a nearly horizontal sink flow in epilimnion and hypo- 
limnion which is directed towards the injection point. The water transported through 
these layers enters a ‘near field’ surrounding the injection point, is mixed due to the 
turbulence caused by the air injection, and flows outwards horizontally as an inter- 
layer of intermediate temperature and density. It has been found from destratification 
experiments in nature that the Coriolis force causes azimuthal velocities in epilimnion 
and hypolimnion which sometimes are larger by an order of magnitude than the radial 
components. A mathematical model of the destratification process in which viscous 
effects are ignored has been developed (Kranenburg 1978). 

To obtain an understanding of the combined effects of viscosity and rotation, a 
simpler but related problem is examined in this paper, namely the local withdrawal 
from a single, homogeneous layer of viscous liquid in a rotating, shallow basin with 
a free surface, a horizontal bottom and a vertical side wall. The sink through which the 
liquid is withdrawn is remote from the side wall. It may be thought of as a vertical line 
sink extending from the free surface to the bottom, or a point sink at a certain depth. 
The influence of the actual shape or depth of the sink is likely to be confined to a 
relatively small region enclosing the sink. This point is discussed further in 0 3. 

The theory presented is connected with the studies by Barcilon (1967)) Hide (1968) 
and Kuo & Veronis (1971). Both Barcilon and Hide consider the steady source-sink 
flow in a rotating, closed container in the absence of a free surface, the fluid being 
injected or withdrawn at the side walls. In  the case of a constant-depth simply con- 
nected container, where the net mass flux at  the side wall must be zero, the flow outside 
the viscous boundary layers a t  the end walls (the interior flow) is not influenced by the 
presence of the end walls. On the contrary, a net mass flux at  a side wall in a multiply- 
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connected container is entirely transported within the boundary layers a t  the side walls 
and end walls. This different behaviour is also discussed by Greenspan (1968). The 
influence of a free surface is examined by Kuo & Veronis. The flow is quasi-steady, the 
container is simply-connected, and again the sources and sinks are at  the side wall. The 
presence of a free surface makes it possible to have a net mass flux also in the case of a 
simply-connected container. The boundary layers then play an essential role in the 
transport of mass, to a certain extent analogous to that in the case of a closed, multiply- 
connected container. A net inflow (or outflow) is found to cause a gyre in the interior 
of the flow, since the mass transport from the bottom boundary layer into the interior 
requires a rotational interior flow. 

The case considered here differs in two major respects from that by Kuo & Veronis. 
Firstly, the sink is placed a t  some distance from the side wall, which in fact makes the 
container multiply-connected. As a result a vortex with its centre at the sink arises, 
which partly or completely (in an axisymmetric situation) annihilates the gyre found 
by Kuo & Veronis. Furthermore, the side-wall viscous boundary layers are of secondary 
importance, the mass transport towards the sink taking place within the bottom 
boundary layer and the interior. Secondly, the development of the flow from rest 
(relative to the rotating basin) is examined. It is found that initially the mass transport 
takes place for the larger part in the interior of the flow, but when a quasi-steady state 
has set in after a certain spin-up time all mass is transported within the bottom 
boundary layer. The analytic development is based on the Ekman model of rotating 
flow ( 9  2).  A first-order correction as regards the influence of the inertial terms in the 
equations of motion is given in $ 3  for a special case. Some theoretical results are 
compared with laboratory experiments in 0 4. 

2. Ekman model 
It is well known that, if certain conditions (to be specified later) are satisfied, an 

Ekman boundary layer will develop at  the bottom of a rotating basin. Assuming a 
constant viscosity v, or, in the case of turbulent flow, a constant eddy viscosity, the 
vertical velocity distribution in the Ekman layer is given by ( z  = 0 at the horizontal 
bottom) 

u(x,  y, z, t )  = U(x ,  y, t )  (1 - e-kz cos kz) - V ( x ,  y, t )  e-kz sin kz 

v(x, y, z ,  t )  = U ( x ,  y, t )  e-kz sin kz + V(x ,  y, t )  (1 - e-kz cos kz) ,  

(2.1) 

and (2.2) 

where x, y are horizontal co-ordinates attached to the rotating basin, z is the vertical 
co-ordinate, u, v are horizontal velocity components, t is time, and k = (f/2v)*. Hercf is 
the Coriolis parameter ( = 2i2 sin #, i2 is the angular velocity of the earth and the 
latitude). The velocity components U and V representing the flow in the region outside 
the Ekman layer (the interior flow region), do not depend on the vertical co-ordinate z .  
An estimate of the thickness 6 of the Ekman layer is 

6 ( V l f  1'. (2.3) 

Equations (2.1) and (2.2) imply a horizontal transport of mass through the Ekman 
layer, which is normal to the velocity vector in the interior flow region (Ekma'n 
transport). 
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In terms of a horizontal length scale L*, a velocity scale U* and a time scale T* the 
conditions for an Ekman layer to occur are 

where Ro is a Rossby number, and E an Ekman number. The first two conditions 
represent the requirement that the inertial terms in the equations of motions should be 
relatively small, the third condition indicates negligible shear stresses in lateral planes. 
We shall give appropriate expressions for the scales later. 

The equation for the vorticity u = aV/ax - aU/ay in the interior flow region is 

aw aw aw au av 
at ax ay - + u-+ v- + (f +o) (= + %) = 0. (2.5) 

Assuming (2.4), the vorticity is small when compared with the Coriolis parameter, since 

j f f f L * =  Ro. 

We may therefore approximate (2.5) in the first instance by 

a@ aw aw au av 
-+U-++-+f -+- - 0 .  
at ax ay (ax ay)  (2.7) 

The continuity equation for a fluid element extending from the bottom to the free 
surface ( z  = h)  is 

(2.8) 

The rigid-body rotation of the basin causes a paraboloidal free surface (in a uniform 
gravity field). We assume such small angular velocities of the basin that this deforma- 
tion is negligible, which requires a Froude number, ( fL*)2/(gh) ,  to be small compared 
to unity (Kuo & Veronis considered Froude numbers of order unity). The sink flow also 
causes a deformation of the free surface, in particular close to the sink. Restricting the 
analysis to  relatively small discharges, so that the radius of the ‘dimple’ in the free 
surface remains small, this contribution to the deformation of the free surface may also 
be neglected for the larger part of the flow. Some further discussion of this point is 
given in 5 5. Introducing the approximations ahlax E ahlay N 0, (2.8) becomes 

where Q is the discharge withdrawn, and A the surface area of the basin. The right- 
hand side of (2.9) represents the so-called Ekman suction (or injection), a vertical 
transport of mass from the interior flow into the Ekman layer (or conversely) (e.g. 
Greenspan 1968). Eliminating the divergence aU/ax + aV/ay of the interior flow field 
from (2.7) and (2.8) yields as an equation for the vorticity 

(2.10) 
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A H  0 - 
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FIGURE 1. Time evolution of vorticity. ct = 0-2. 

where DIDt = a/at+ Ua/ax+ Va/ay is the material derivative. The water depthh 
follows from 

d h  Q 
dt A 
-+- = 0, h(O) = H ,  (2.11) 

where H is the initial water depth (Q is assumed to be zero when t < 0). 
Integrating (2.11) and (2.10) yields the vorticity of a particular fluid element in the 

interior flow region as a function of time. However, (2.10) holds for all fluid elements in 
the interior flow region. Consequently, these elements all attain the same vorticity at 
a certain instant, and the voriticity does not change in horizontal directions (awlax = 
aw/i?y = 0). Therefore (2. 1O)is not only valid for a single element but also for the interior 
flow region as a whole. Since the fluid is at rest at t = 0, the initial condition for 
the vorticity equation (2.10) is w ( 0 )  = 0. The different behaviour of fluid entering the 
interior flow region as a consequence of upwelling at the side wall is discussed later. 

The solution of (2.10) in the case of a constant discharge Q (t  > 0 )  is, see figure 1, 

where 

w = - ;? Q (--) 2 f *  [ 1 - (ye], 
A f v  

a = 9 (")". 
(2.12) 

(2.13) 

Since w N U*/L*,  and the spin-up time to N H/(v f  )* (figure 1) ,  an obvious choice for 
the scale quantities involved is 

The length scale L* is associated with the size of the basin. We therefore assume 
L* = A t .  The conditions (2.4) then become, respectively, 

SIH < 1, a <  1, 82/A << I. (2.14) 
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Ekman transport 

FIGURE 2. Flow at side wall. (a) Downwelling, (b) upwelling. 

The first condition indicates that the Ekman layer thickness should be small when 
compared with the water depth; the second that the time [ N H/(v f  )4] to reach the final 
vorticity should be much less than the time ( = A H / & )  needed to empty the basin. The 
third condition is less restrictive than the first, since in general A > H 2 .  

2.1. Boundary condition at the side wall 

In the case under consideration the boundary layer at the side wall is not essential for 
the mass transport (also see $2.2) ,  but only serves to reduce the velocity at the side 
wall to zero. Therefore, the only boundary condition at the side wall we consider is a 
zero net flux normal to it, that is 

lohu.ndz = 0, (2.15) 

where u is the (horizontal) velocity vector (u = (u, v)), and n is the unit vector normal 
to the side wall. Substituting from (2.1) and (2.2), equation (2.15) gives 

1 
U . n  N chU.s, (2.16) 

where U is the (horizontal) velocity vector of the interior flow, and s is the unit vector 
tangential to the side wall. The physical interpretation of (2.16) is that the Ekman 
transport a t  the side wall is compensated by an interior flow normal to the wall and 
downwelling (Ekman transport inwards, figure 2a) or upwelling (Ekman transport 
outwards, figure 2 b )  at the side wall. It follows from (2.14) and (2.16) that  

/ U . n J  < IU.sl. 

Equation (2.16) can be utilized to obtain an expression for the circulation $ U . d s  
along the side wall. The equations of motion for the interior flow may be written 
(a possible centrifugal force is absorbed in the pressure term, and - w < f ) 

au 1 U . U ) + -  + f X U E O ,  -+v  at [d P "I 
where f = (0, 0,  f ). Forming the scalar product of this equation with a vector element 
ds along the side wall and integrating yields for the circulation along the wall 

gf dt U . d s + $ d s . V  [ & ( U . U ) + -  "I P + I d s . ( f  x U )  = 0;  
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U and p are single-valued functions; the second term therefore vanishes. The thin 
term mag be written 

$as.  (f x U) = f Lj U.ds. 

This result and the boundary condition (2.16) then change the above equation to  

a 
at 

The solution of this equation is 

The constant of integration C is equal to zero, the fluid being a t  rest at  t = 0. The 
negative argument of the exponential function indicates that the solution of a vanishing 
circulation along the side wall is stable. We thus obtain for all t 

jU .ds  = 0. (2.17) 

This result shows that, if U does not vanish everywhere a t  the wall, there must be at 
least two stagnation points at  the wall. We shall see later that these two stagnation 
points are related to the occurrence of a vortex near the sink and a counterrotating 
gyre attached to the far wall. 

2.2. Interior $ow field 

The definition of the vorticity and the continuity equation (2.9) yield the equations 
for the interior flow, 

and 

= u  
av au 
ax ay 
--- (2.18) 

(2.19) 

The vorticity of the interior flow follows from (2.10). It depends on time, but not on the 
horizontal co-ordinates. The vorticity of the fluid entering the interior flow region at 
the side wall (upwelling of fluid transported outwards in the Ekman layer) is different. 
The order of magnitude of the inward velocity U .n of this fluid is, see (2.16), 

1 Q 
2kh '* - H A # .  

U.n N - 

The time this fluid needs to adapt its vorticity to that of the interior flow is of order T*. 
The distance the fluid element travels in the direction normal to the wall within this 
time interval is 

(U.n)T* - &At. 

Since a is assumed small, there is only a relatively thin layer at  the wall where the 
vorticity differs from that in the remaining part of the interior flow region. 

Neglecting this effect, the right-hand sides of (2.18) and (2.19) become functions of 
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time only. We may then introduce a stream function Y and potential functions CDl and 
Qz not depending on time, according to 

and 

(2.20) 

(2.21) 

On substitution of (2.20) and (2.21) into (2.18) and (2.19), Y, CDl and CD, are found to 
satisfy the equations 

and 

(2.22) 

(2.23) 

(2.24) 

The boundary conditions follow from (2.16). Since the coefficient 1/2khin this equation 
is much less than unity, it  suffices to take into account on the right-hand side of (2.16) 
only the leading terms of (2.20) and (2.21). We then obtain 

a~ )m1 w a@, o a~ 
-wA-+-  - A + &  - + - A -  21 - A - - ,  

as h 2k an 2kh an 2kh an 
(2.25) 

where s and n are co-ordinates along and normal to the wall. I n  order that stream 
function and potential functions do not depend on time, the following conditions at 
the side wall must be satisfied : 

(2.26)-( 2.28) 

The above equations reveal the physical significance of Y, CDl and CD,. Initially 
(t < 2'") the vorticity w is still small, and the velocities follow from the potential 
function Ql. The flow is then almost identical to that in a non-rotating reservoir, the 
transport of fluid towards the sink taking place over the whole depth (figure 3a) .  When 
time elapses, the vorticity increases, so that the factors multiplying derivatives of 'Y 
and @, in (2.20) and (2.21) increase. When w has reached its final value - 2kQ/A [see 
(2.12)] the influence of the potential function CDl vanishes. The right-hand side of the 
continuity equation (2.9) shows that, as w increases, the Ekman layer suction increases. 
The (vertical) suction velocity w/Zk tends to the vertical velocity of the free surface 
( - & / A )  as w tends to its final value. Consequently, the transport of fluid towards the 
sink then takes place completely within the Ekman layer, whereas the streamlines of 
the interior flow are closed (figure 3 b ) .  This result for (quasi-)steady flow is well known. 

The net flux a t  the side wall due to Q2 vanishes [this follows from (2.28) and (2.17)]. 
As discussed in the introduction, the flow resulting from this contribution therefore 
takes place in the interior and additional transport within the side-wall boundary layer 
is absent. 

The functions Q1 and Y are singular a t  the sink. Introducing cylindrical co-ordinates 
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FIGURE 3. Principles of flow field. (a) Initial phase, ( b )  final phase. 

FIGURE 4. Application of Stokes's theorem. 

(with the vertical axis at  the sink and radius r ) ,  the continuity equation when applied 
to the interior flow region yields, for r -+ 0, 

(2.29) 

Here U now is the radial velocity component. The last term in (2.29) represents the 
transport through the Ekman layer. It follows from (2 .29)  that 

1 r  
2n ro 

@,+--In- if r + O ,  (2.30) 

where ro is an arbitrary constant. 

to the region enclosed by the contour shown in figure 4. This gives 
The singularity in the stream function Y can be found by applying Stokes' theorem 

$U.~S-(~TT?'),-,, = wA. 

Here V now is the azimuthal velocity component. Using (2.17) we obtaint 

V-+- -wA/2m and Y+- - ln  - if r - + O .  2', (;J (2.31) 

The singularity in Y will not occur if the sink is situated a t  the side wall. This case was 
treated by Kuo & Veronis (1971). 

t This result can also be derived by using the Ekman-transport concept. 
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Equations (2.29) and (2.30) show that the azimuthal velocity V in the final phase is 
an order of magnitude (namely by a factor h / 2 k )  larger than the radial velocity U in 
the initial phase. 

All equations and boundary conditions determining the functions Y, (Dl and cD2 are 
time-independent. This therefore also holds for the functions themselves. 

3. First-order correction to Ekman model for a special case 
The boundary layer within a certain distance from the sink is not of the Ekman type, 

since the relative magnitude of the inertial terms in the equations of motion increases, 
and becomes large, as the distance from the sink decreases. To examine the boundary- 
layer flow closer to the sink in somewhat greater detail, we consider in this section the 
final (quasi-steady) phase of centric withdrawal from a circular basin. This case repre- 
sents the simplest flow configuration that exhibits the singular behaviour a t  the sink. 
Extension to the more general situation discussed in 3 2 is straightforward. 

In all cases where the sink is not at the bottom, the boundary layer breaks up under 
the sink to establish an upward, rotating flow along the vertical axis; this flow resembles 
that occurring in the core of a tornado (cf. Turner 1966, Burggraf & Foster 1977, for 
instance). Lewellen (1962) gives a formal series expansion of the governing equations 
in a small parameter, which in the present notation may be written [Q/( l?L)]2. Here 
r0 is the scale of the circulation and L a local horizontal length scale. Lewellen shows 
that the leading terms in the expansions for the circulation, and radial and vertical 
velocity components do not depend on the vertical co-ordinate. This indicates that the 
interior flow in the problem under discussion becomes appreciably disturbed by the 
shape or depth of the sink at  horizontal distances L of order Q/Yo. Substituting from 
equation (3.5) given below would yield L w ( v / f  )*, which is much less than the total 
depth, see (2.3) and (2.14). This conclusion is in qualitative agreement with the 
experiments described in 0 4. In the analysis which follows we restrict ourselves to the 
region where the bottom boundary layer still exists. 

The boundary-layer equations are, in cylindrical co-ordinates, 

and 
a aw 
ar a2 
- ru+r-  = 0. (3.3) 

Here u, v and w are the radial, azimuthal and vertical velocity components. V is the 
azimuthal velocity of the interior flow. These equations are identical to the equations 
given by Burggaf, Stewartson & Belcher (1971), except for the Coriolis terms. These 
authors examined the boundary layer at the bottom of a non-rotating container induced 
by a potential vortex. Some of their results for small radius apply to the present case, 
since the Coriolis terms are then of secondary importance. Burggraf et al. obtained the 
following results of interest here for r tending to zero. The boundary layer attains a 
‘double structure ’ comprising an inner and an outer boundary layer. The inner layer 
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develops at the bottom. Its thickness is of order r(V/l?o)+. The inner layer has a 
similarity structure, the similarity variable being z/r(v/r'O)i, which structure is 
determined by the local properties of the flow. The (absolute value of the) radial 
velocity component in this layer is an order of magnitude larger than the azimuthal 
component. In  the outer layer the horizontal velocity vector rotates from the negative 
radial direction in the inner layer to the azimuthal direction of the undisturbed flow, 
but the magnitude of the velocity is independent of z. The outer structure depends on 
the history of the boundary layer. Since u < 0, the boundary conditions at  the side 
wall of the container therefore act upon the outer structure. All velocity componentsin 
the outer layer are inversely proportional to the radius r ( r  -+ 0 ) ,  which implies a finite 
volume flux towards the axis. It is this result that makes the analysis of Burggraf et al. 
applicable to the problem under consideration. 

Introducing, for the present problem, a vertical length scale 60, a radial length scale 
Lo, a horizontal velocity scale UO = rO/Lo, and a vertical velocity scale WO = UOSo/LO, 
the behaviour of the boundary layer for r -+ 0 indicates that the scales may be so 
chosen that 

Non-dimensionalizing the boundary-layer equations and requiring that all coefficients 
be unity to preserve the validity of the equations for all r ,  yields for the scale quantities 

SO = (v/f), Lo = [Q/(vf)B]*, Po = &( f/v)B and WO = (vf )B. (3.5) 

Apparently, the vertical length scale and the scale of the circulation are the same for 
r -+ 0 as those for the Ekman model. The radial length scale is different, since Lo is of 
order Rod and L* is of order R, where R is the radius of the basin.? These results imply 
that the (outer) boundary-layer thickness and the circulation are smooth functions of 
the radius as r goes to zero. It would be interesting to have numerical solutions of the 
boundary-layer equations to verify these conclusions. A similar problem, namely the 
boundary-layer flow induced by a potential vortex in a rotating container, was sug- 
gested by Brown & Stewartson (1976) in a somewhat different context. The flow will 
be of the boundary-layer type, provided (60/LO)2 = v/rO < 1.  

3.1. Expansion for small a 

The above discussion will serve to yield a matching condition for a first-order correction 
to the Ekman model. As regards an expansion about the Ekman model the vertical 
length scale, radial length scale, horizontal velocity scale and vertical velocity scale 
may be conveniently chosen as, respectively, 

24 ro (F)', R, -- n R  

L8 measures the size of the region surrounding the sink where the inertial terms dominate 
the Coriolis terms. 
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where r0 is given by (3.5). Normalizing the boundary-layer equations with these scale 
quantities yields the dimensionless equations 

and 

1 82’ 
(3.7) 

Rossby number a, 

where the functions ui, vi and wi 
zero-order equations are 

(u, 0, w) = 

1 a2uo -- 2 a22 +vo = v9 

These equations yield, together 
solution 

uo = - Vh,  vo = 

One set of boundary conditions derives from the no-slip condition a t  the bottom z = 0 .  
For the present, the horizontal interior velocity components ( U  = 0, V =+ 0) are 
prescribed to yield a second set of boundary conditions, and the aim is to find the 
vertical interior velocity component (the suction velocity). In a second step we equate 
the suction velocity to the vertical velocity of the free surface in order to determine the 
final azimuthal velocity distribution. 

In the first instance we assume a regular asymptotic expansion in powers of the 

(uo, vo, wo) + 4% v1, w1) + . . ., (3.9) 

( j  = 0,1, . . .) are assumed to be of order unity. The 

-- 1 a2vo a aw0 
a22 -uo = 0, -ruo+raz = 0. ar 

(3.10) 

with the boundary conditions, the Ekman-layer 

where h = exp ( - z )  sin z, and y = exp ( - z )  cosz. The first-order equations are 

and 

(3.11) 

(3.12) 

(3.13) 

where Fuo and Fvo are known functions of r and z ;  

V d  V2 V2 
Fuo = V PA2- - - ( Y V )  (1 - h - y )  A’ - - ( 1  - P ) ~  +- 

2r dr r r 

and 
V d  V2 
2r dr r F,, = - Tr V’h( 1 - y )  - - - ( r  V )  (1 - h - y )  y’ - - A( 1 - y) ,  

where V’ = dV/dr, A’ = dh /dz  and y‘ = dy/dz. Introducing the complex variables 
u,, = ul+ivl and 4o = Puo+iFvo, (3.11) and (3.12) may be written as 
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The boundary conditions are ucl(r, 0) = ucl(r, m) = 0. On integration with respect to 
z this equation yields 

where = 1 + i. At this stage a physically unrealistic singularity at the axis comes out. 
The function Fco and therefore the complex velocity ucl are proportional to r4 as 
r -+ 0. This situation becomes increasingly worse in higher-order approximations. This 
behaviour for r --f 0 contradicts the conclusions drawn earlier in this section. Obviously, 
this anomaly is caused by the asymptotic expansion (3.9). Several methods exist to 
remove a singularity which emerges in an asymptotic expansion, but which does not 
occur in the original equations. We shall use a 'renormalization technique' in the 
sense that the singularity is removed after the expansion has been performed (e.g. 
Nayfeh 1973). 

Equations (3.13) and (3.14) yield for the first-order vertical velocity in the interior 
flow region 

(3.15) I a 
c,rVV'+c2V-(rV)+c3V2 , r dr dr 

(3.16 c) and 

The relation between c2 and c1 follows from integration of (3.166) by parts. 

velocity of the free surface, which is, in dimensionless form, equal to - 8. This gives 
We now equate the vertical interior velocity (with error of order a2) to the vertical 

ad 
(r V )  +; [(c, + c2) r VV' + (c2 + ~ 3 )  7'1 2 - 8. i a  -- 

2r dr 

This equation may be integrated once to give ( V (  I )  = 0) 

(3.17) 
2a r srZ [ ( c , + c ~ ) ~ w +  (c3-c1) r21 = a(l-r2), 

where I' = rV .  According to the discussion of the solution for r -+ 0, r should remain 
finite as r tends to zero. Adopting Lighthill's method to remove the singularity in I? 
(e.g. Nayfeh 1973), we assume the expansions 

r = ro(s) + ar,(s) + . . . 
and 

On substitution into (3.17) this yields as a zero-order solution the trivial result 

r2 = s + C(<~(S)  + . . . . 

r - I  
0 - 2 ( 1 - 4  

and as a first-order solution 
(3.18) 

rl = - 4(c1 + c2) ro d r  -O - 2 ( ~ , -  CJ - r,2 - it,. 
as S 



SinkJlow in a rotating basin 77 

I Y  

FIGURE 5. Definition sketch of circular basin. 

The singularity in rl can be removed by letting 

and r 2  = .S-a(cs-cc,)- ( l -  s)2 + O(a2). 
S 

(3.20) 

This solution implies that I' is a smooth function for all radii. Thus the physically 
unrealistic singular perturbations, which (3 .17)  in principle permits since the expansion 
parameter multiplies the highest derivative, are suppressed. It is well known that the 
absence of singular perturbations is a condition for Lighthill's method to yield realistic 
results. 

The solution obtained is not valid in a certain region (r N Rat) near the sink. That it 
nevertheless can be valid a t  larger distances is related to the parabolic character of 
the boundary-layer equations (3 .1 )  through (3 .3 ) ,  which precludes upstream influence. 

4. Theoretical and experimental results for a circular basin 
The interior flow pattern as predicted by the Ekman model ( $ 2 )  is determined by 

the functions Y, (Dl and (D2. Here we devote attention to the stream function 'F only, 
since this function represents the influence of the rotation on the interior flow. It also 
determines to a large extent the flow in the final quasi-steady phase in the case where 
Q is constant. The potential function (Dl represents the flow pattern in the absence of 
rotation, and is of less interest here. The contribution of the potential function O2 is 
of secondary importance, because of the small factor 1/2kh in (2.20) and (2 .21) .  

The solution of (2.22) for a circular basin (figure 5) ,  which satisfies the boundary 
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FIGURE 6. Time evolution of azimuthal velocity. - -  - , inviscid solution; -, zero-order 
(Ekman) solution; -*-, first-order solution; 0, experiment. r = 0-097 m, f = 2.Q = 0.161 s-l, 
Q = 0.0792 x m3 s-l, a = 0.158. 
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FIGURE 7 .  Radial distribution of final azimuthal velocity. -, zero-order (Ekman) solution; 
-. - , first-order solution; 0 ,  experiment.f = 2.Q = 0.091 s-l, Q = 0.0410 x ms s-l, u = 0.109. 

condition (2.26) and has the correct singular behaviour at the sink according (2.31), is 

Y=--In 47r 1 [ - R2 Z2 ~ ~ + ( y + R ~ / l ) ~ ]  X ~ + ( ~ + Z ) ~  +-- 47r 1 x 2 + y 2  R2 * (4.1) 

The co-ordinates of the sink are x = 0, y = - 1 .  

corresponding final radial and azimuthal velocities become 
In the case of centric withdrawal the solution simplifies to that given by (3.18). The 

This result may be derived more simply directly. Figure 6 shows the azimuthal 
velocity V at a fixed radius as a function of time. It is seen that the viscous and 
inviscid (slip conditions at  the bottom) solutions initially coincide, but that the viscous 
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FIGURE 8. Theoretical streamlines Y = constant. (a) Z/R = 0.467; ( 6 )  Z/R = 0.867. 

FIGURE 9. Experimental path Iines of interior flow in final phase. f = 2St = 0.29 s-l, 
Q = 0.041 x 10-3 m* s--l, a = 0.061. (a)  Z/R = 0.467; ( b )  Z/R = 0.867. 

solution branches off to a constant final value. Figure 7 shows the radial distribution of 
the final azimuthal velocities. 

Figure 8 shows theoretical streamlines Y = constant for two eccentricities l / R .  It 
is seen that a vortex develops near the sink, much as in the case of centric withdrawal, 
and that a counterrotating gyre is generated a t  the far wall. The stagnation points at 
the side wall separate regions with upwelling and downwelling [cf. equation (2.28)], 
upwelling occurring a t  the far wall. 

Experiments were done in a circular tank, diameter 1.50m and maximum water 
depth 0.20m, placed on a turntable rotating in clockwise direction. The angular 
velocities of the turntable (O.OPO.l4rad/s) were so low that the deformation of the 
free surface owing to the centrifugal force was negligibly small. In  the experiments with 
centric withdrawal water was withdrawn through a small pipe a t  some distance above 
the bottom. The Ekman layer was visualized with potassium permanganate crystals 
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sprinkled on the bottom. Except very close to the sink, the angle between streaklines 
and azimuthal direction was nearly 45 degrees, which is in agreement with the theory 
of the Ekman layer. Near the sink the flow a t  the bottom was radially directed, in 
accord with the discussion in $3 .  Azimuthal velocities of the interior flow were deter- 
mined with a micropropeller (figure 6) and by measuring the travelling times of a float 
at the free surface (figure 7). The accuracy of the micro-propeller measurements is 
about 10 per cent for the lowest velocities and about k 5 per cent for the largest 
velocities shown in figure 6. In  the case of the float the accuracies are about & 1 and 
k 3 per cent, respectively. 

Figures 6 and 7 show that the theory predicts the velocity distribution correctly. 
The first-order correction appears to account for the greater part of the discrepancy 
between zero-order (Ekman) solution and observed velocities. 

In  the experiments with eccentric withdrawal water was withdrawn through a hole 
in the bottom of the tank. Figure 9 shows experimental paths of floats travelled during 
fifteen rotations of the tank. Using a fixed camera, the paths were determined by 
photographing the floats after each complete rotation. The bottom and side wall of the 
tank were painted black so that the exposures could be made on a single negative. 

The experimental pattern of the interior flow is much as predicted by the Ekman 
model, although the agreement is mainly qualitative in the case of the larger eccentri- 
city. Possibly, the contribution of the potential function Q2, which is not considered in 
figure 8, plays a part here. 

5. Concluding remarks 
The deformation of the free surface was ignored in the analysis, although a marked 

drop in water level does occur close to the sink. The velocity distribution near the sink 
is influenced by this drop in water level during the transient (spin-up) phase of the 
flow. In the final (quasi-steady) phase, however, the velocities are not affected, since 
the suction velocity then equals the vertical velocity of the free surface, which does 
not depend on the ultimate shape the free surface takes on. 

Integrating the equation of motion in radial direction, it can be shown that the 
radius rl at which the drop in water level becomes larger than about two per cent of the 
total depth, is given by 

where g is the gravitational constant. Equation (5.1) in many cases yields fairly small 
radii rl .  In  the case of withdrawal from a constant-density layer in a stratified basin, 
however, the deformation of the interface may be much larger. The gravitational 
constant in (5.1) has then to be replaced by (Aplp)  g, where A p  is the density difference 
between the layers and p is the density of the lower layer. Aplp is a small number in the 
case of thermal stratification, and the radius rl can become considerable. 

The research reported here will be continued with experiments on selective with- 
drawal from a two-layer system, and destratification experiments in which air is 
locally injected a t  the bottom of a two-layer system. The major interest in these 
experiments is in the properties of the interface, such as its stability and frictional 
behaviour . 
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